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Abstract: At eleven P.M. we say good night. Alas why night and day are complementary but not constant factor for animal 
kingdom as well as time and space is also a dominating factor. We are trying here to describe an universe of graphs. Where 
our root is on the earth and head is towards infinity if any. We are introducing the term canopy which encompasses the whole 
graph theoretic structure under one head. The root of canopy may be zero (of course not well defined) but mind set dictates 
that the universe may be partially visual. 
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Behind the Bar 
Many real world situations can conveniently be described by means of a graph consisting of a set of points together with lines 
joining certain pairs of these points[1,3,9,10],. A graph is a useful medium for modeling of relevant parts of reality in 
computer science. A mathematical abstraction of different problem situations of vast area such as operational research, 
physics, chemistry, economics, genetics, sociology, linguistics, engineering and computer science etc.[6,9,10] give rise to the 
conceptual versatility of a graph. Any problem which is combinatorial in nature can be solved in terms of graphical structure 
[3]. In real life, the problems may be of infinite dimensions. Design of ingenious information structure, for minimizing 
complexity and redundancy of the problem space are versatile. This is unique in the sense given an arbitrary ’n’ node graph 
the problem which becomes countable infinite and in some cases it is uncountable infinite. We have chosen philosophy of 
Marvin Minsky [9] to take the problem as finite. Which obviously when extended reaches to countable infinite status. 
Different areas can be transformation to equivalent graph problems. Problems which can be mapped as graphs are normally 
simple in nature but we remember the adage “Simple things are mighty things”. What we mean that normally for example it 
is a practice to bring undue mathematics to make things complex but although the graph algorithms are of exponential 
complexity for large dimension we take it otherwise. Our approach is to make or present simple graph algorithms here, 
which, when stated in complex way become complex. For example four color conjecture is no longer a conjecture but 
without any proof, when the graph is planer. The problem is NP-hard [3] even it is 3-coloribility problem just like 3-SAT 
problem [3]. The polynomial reducibility [3] of 3-SAT to Coloring  by forming widget[3,19] was a landmark to see how 
complex problem can be simplified[3]. 
Combinatorial algorithms [2] can be defined informally as techniques for the high-speed manipulation of combinatorial 
objects such as permutation of combinatorial objects such as permutation or graph [2]. The number of such problems are 
enormous and art of designing such algorithms are especially important and appealing because dealing with combinatorial 
algorithm is a like playing games or solving puzzles. We are addicted to it. [Don’t confuse it with the allurement of lady 
nicotine.] A good algorithm for combinatorial problems can have a costly payoff has led to terrific advances in the state of 
the art. According to “Floyd’s lemma” [2] the dramatically change of complexity of so called intractable problems [3] now 
moving to tractable due to the improvement of the algorithms rather than to improvement of hardware. 
  
Representation greatly influence the efficiency of graph algorithms. Linearity can only be achieved through appropriate 
storage of adjacency information [19]. A good trick design of data structure can enhance the efficiency of designed algorithm 
for generation of all spanning trees  
these are PRIES (Privileged Reduced Incidence Edge Structure) [18] and SPRIES (Super Privileged Reduced Incidence Edge 
Structure) [17]. According to Cormen and et al. [19] some problems are intractable due to lack of improvement of data 
structure. 
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Canopy(n) 
When a new term or definition is introduced in graph theory like concept of quantum computing and later a prize winning 
terminology that may occupy a space in Wikipedia. As observed by Knuth and quoted as “ The number of system of 
terminology presently used in graph theory is equal, to close approximation, to the number of graph theorists.(Richard P. 
Stanley(1986))[2]”. We introduce a “n” integer permutation and combination since that is wonderful, smell like an umbrella 
in a disturbed atmosphere, a place for small party in a resort or a pandle coverage for a ceremony. The reflection of a tree in 
the root and the top shows the scenario which is open to expand at any time. The canopy filters the sunlight, softens the rain, 
and blocks the wind so that younger, more tender life may thrive. In turn, the roots of the trees draw nutrients and moisture 
from the soil and organic material on the forest floor, conveying it up to the green canopy and keeping it lush and growing. 
Similarly, interests and ideas which foster creativity keep people vital and growing. They provide sanctuary from the 
pressures of life, and allow people to discover who they truly are. Each person brings new perspective to ancient ideas, 
stretching the boundaries much as the canopy stretches toward the sky. 
 The canopy is the topmost layer of life which provides shelter for all that resides beneath it. 
Definition1:- Canopy (n) is the universal structure consisting of a set of points and their interconnection. It encompasses 
different sub areas . 
For example in terms of ‘n’ points we can classify different graph theoretic structures following the basic graph theoretic 
axioms. 
Axioms: - i) A set of points n , finite or infinite. 
                  ii) Sum of the interconnections among the points is even. 
Canopy has the following structure which may not be finite. We initially give a graphical structure (like family tree) that 
summarises the present domain of graph theoretic cultural heritage. 
We try to define properties of the graph theory as 
Properties:-i) adjacency 
                    ii) Incidence 
                    iii) Degree Sequence 
 
Million dollar question- Why another term in graph theory?  
We find that scientists search for unified theory in any field for getting a glorified footage. We have met the axioms, theorem, 
conjecture , lemma in graph algorithms that need to be precisely collected and reformed always as a ready reference. For 
Example D. E. Knuth when writing his “Art of Computer Programming [2]” used graphs for his future plan or for reading the 
volumes. His infinite plan shows us a posturize view in volume 4. He should justify to the graph: that he described as the 
beginning. We think any mathematical term should study as canopy (n) before proceeding further with progenies.. 
The large number of graph algorithms can be solved in polynomial time if it is labeled graph . In other words we reduce the 
size of the problem humanologously. Any physical problem can be represented and manipulated in digital computer by codes 
(discrete, finite).Computer representation of a graph has different fascicles. We are concentrating in a general number 
sequence usually denary system called degree sequence. Any of the sequence cannot be graphic sequence. They need some 
additional constraints [5, 16]. After satisfying some constraints it become the degree sequence of a graph i.e. graphic 
sequence.   
In our realization on studying different problem, the degree sequence gives a focus on each of the problem. For example the 
tree of a graph is the skeleton of the canopy. Hamiltonian path is one of the covers (Like an umbrella).  
Graph →Labeled Graph →Reconstruction →Isomorphic→ Isomorphic  Graph 
According to M.R. Garey / D.S. Johnson [4] most of the intractable problems can be reduced polynomial to graph problems. 
Degree sequence is a numerical sequence that represents many of the exemplary algorithmic paradigms. 
In our deigned figure of Canopy of the graph we tried to cover many of the well-known problems and ambitious that later a 
large number of problems should be included under this canopy. 
 
Classification 
 
Classification for representation of graph 
Canopy is an ancestor with infinitely numerous siblings. Graph is one successor on which our attention is focused now. There 
are a large variety of parameters to define a graph. Some of them are independent to directly represent the graph and others 
are combinations of the parameters to represent the graph as unique or any graph. We should not deceive readers the in fact 
only integers can represent a graph with a variety combinatorial combination of the parameters. 
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Fig1. Representation of Graph 

 
Relation and Functions [13] 
 The first one is as relation and functions, where we can define the graph as “A graph G consists of a finite set of vertices and 
an irreflexive binary relation on vertices. The binary relation may be termed either as a collection of edges of ordered pairs or 
as a function from vertices to its power set”. The classical concept of domain and co-domain is also relevant in our general 
definition. 
 
Level and adjacency information[13,15 
When each vertex are assigned a unique name and the adjacency are mapped as  
Adj: V -> p(V) i.e. a function from V to its power set. 
We can identify the unique graph using these techniques. A large number of graph theorist problem those are exponential in 
nature are polynomial solvable for their labeled representation. For example isomorphism checking, Reconstruction etc.. 
 
Cut Sets [13] 
As we know from set theory that the union of all subset gives the original set. Here we take one special type of sub graph of 
connected graph whose removal from the original graph separates in two or more sub graphs. Another form of cut set is 
fundamental cut set [13]. Fundamental Cut Set determines the dimension of the particular graph. 
 
Trees [13] 
A tree is a minimally connected sub graph. If we explore the all the trees of a graph, then their commutative sum can give the 
original graph. The reverse is also true. We have designed various algorithms [18, 20] in different approaches for the reverse 
circumstances. 
 
Circuit [13, 1] 
A walk is defined as a finite alternating sequence of vertices and edges beginning and ending with vertices. Occurrence of 
vertex may be more than once but edges only once. An open walk is path and a closed walk in which no vertex appears more 
than once is called a circuit [13].  
 
Block [13] 
A connected non-trivial sub graph having no cut point is a block. A block is maximal with respect to his property. If we can 
get the all blocks of a graph, then we can construct the original graph. Reconstruction conjecture is one of the best examples 
for these techniques. We have also designed an algorithm for this purpose [15]. 
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Polynomials[1,13,22,15] 
Given a non negative integer d, a polynomial in ‘m’ of degree d is a function P(m) of the form 
P(m)=∑i =0 to d a i m i ; Where the constraints a 0, a 1,…….,a d are the coefficient the polynomials and a d ≠0. 
A graph can be expressed elegantly by means of polynomials. There are different types of polynomials those can expressed 
the different nature of the graph and can be applied to the different graph theoretic problems. Such as Characteristic 
polynomial [13] for the isomorphism testing of a graph, Chromatic polynomial[13,6] for graph coloring, rank 
polynomial[13,6] for reconstruction of trees and circuits and matching polynomials[15] are for reconstruction conjecture etc.. 
These all polynomials are reconstructible. Each representation of the polynomials can represent the unique some specific 
graphs. Sum of two or more polynomials can represent a unique graph. The polynomials information and degree sequence 
together can represent the unique graph or up to isomorphism. It can also overlap with the level and adjacency to represent 
the original graph. 
 
Degree Sequence[1,4,21] 
A sequence d1,d2,……….,dn of non negative integers is called graphical if there’s at least one graph on vertices {1,2,…….,n} 
such that vertex K has   degree dk [2,13].  
Degree sequence is an inherent characteristic of any graph. From a non negative integer sequence we can recognize it as 
graphic sequence or degree sequence after some constraints satisfaction. We can draw a random graph [2] as well as we can 
identify different characteristics of the graph [7, 8, 17, 19]. If the labeling are added and perform we can draw the graph 
uniquely. This parameter is much more essential among the others to represent the graph with the help of combinations of 
other parameters such as cut set, tree, circuit, block and polynomials as shown in the figure1.  Degree sequence is acting as 
pandel coverage of graph or canopy.  
Etc.:- For future inclusion of the different representation which can itself or power set of some extra information can 
represent a graph. 
The combinations those are identified in the figure1 can uniquely identify the graph is as  
I) Relation and function ii) Level and adjacency iii) Level and degree sequence iv) level, polynomials and degree sequence v) 
Degree sequence and circuit vi) Degree sequence, cut set and block vii)degree sequence and tree viii) degree sequence, cut 
set and tree. Ix) Degree sequence, block and tree x) degree sequence, block and circuit xi) degree sequence, cut set and circuit 
etc. 
These combinations are the different parameters for “n” of canopy (n). So we now define the canopy (n) as Canopy (n) as an 
“n” combinations of parameters identified justly above that encompasses all graphs that may be finite or infinite. 
 
Conclusion 
The effort of us to bring all of graphs under same umbrella may be un-imaginable.  One may ask why? The answer is simple 
– one net cannot catch all fishes in a pond. However we advice here with the hope that the last summer is not the lost 
summer. 
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